Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacol Rep ; 74(5): 1107-1114, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36018449

RESUMO

BACKGROUND: Our earlier studies have shown that the brain noradrenergic system regulates cytochrome P450 (CYP) in rat liver via neuroendocrine mechanism. In the present work, a comparative study on the effect of intraperitoneal administration of the noradrenergic neurotoxin DSP-4 and the knockout of noradrenaline transporter (NET-KO) on the CYP3A in the liver of male and female mice was performed. METHODS: The experiments were conducted on C57BL/6J WT and NET-/- male/female mice. DSP-4 was injected intraperitoneally as a single dose (50 mg/kg ip.) to WT mice. The activity of CYP3A was measured as the rate of 6ß-hydroxylation of testosterone in liver microsomes. The CYP3A protein level was estimated by Western blotting. RESULTS: DSP-4 evoked a selective decrease in the noradrenaline level in the brain of male and female mice. At the same time, DSP-4 reduced the CYP3A activity in males, but not in females. The level of CYP3A protein was not changed. The NET knockout did not affect the CYP3A activity/protein in both sexes. CONCLUSIONS: The results with DSP-4 treated mice showed sex-dependent differences in the regulation of liver CYP3A by the brain noradrenergic system (with only males being responsive), and revealed that the NET knockout did not affect CYP3A in both sexes. Further studies into the hypothalamic-pituitary-gonadal hormones in DSP-4 treated mice may explain sex-specific differences in CYP3A regulation, whereas investigation of monoaminergic receptor sensitivity in the hypothalamic/pituitary areas of NET-/- mice will allow for understanding a lack of changes in the CYP3A activity in the NET-KO animals.


Assuntos
Citocromo P-450 CYP3A , Neurotoxinas , Ratos , Animais , Camundongos , Feminino , Masculino , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Neurotoxinas/metabolismo , Neurotoxinas/farmacologia , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Camundongos Endogâmicos C57BL , Norepinefrina/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos Hepáticos/metabolismo , Fígado , Testosterona/metabolismo
2.
Pharmacol Rep ; 73(1): 303-308, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32888176

RESUMO

BACKGROUND: Cytochrome P450 (CYP) enzymes are involved in the metabolism of many important endogenous substrates (steroids, melatonin), drugs and toxic xenobiotics. Their induction accelerates drug metabolism and elimination. The present study aimed at examining the inducing abilities of two antipsychotic drugs levomepromazine and clozapine for the main CYPs. METHODS: The experiments were performed using cryopreserved human hepatocytes. The hepatotoxicity of levomepromazine and clozapine was assessed after exposure to the neuroleptics (LDH test). CYP activities were measured in the incubation medium using the CYP-specific reactions: caffeine 3-N-demethylation (CYP1A1/2), diclofenac 4'-hydroxylation (CYP2C9), perazine N-demethylation (CYP2C19) and testosterone 6ß-hydroxylation (CYP3A4). In parallel, CYP mRNA levels were measured in neuroleptic-treated hepatocytes. RESULTS: The results indicate that levomepromazine and clozapine induce the expression of main CYP enzyme CYP3A4 in human hepatocytes. Levomepromazine and clozapine at concentrations of 2.5 and 10 µM, respectively, caused a significant increase in the mRNA level and activity of CYP3A4. Both neuroleptics did not produce any changes in CYP1A1/2, CYP2C9 and CYP2C19. CONCLUSION: Levomepromazine and clozapine induce CYP3A4 in human hepatocytes in vitro. Further in vivo studies are advisable to confirm the CYP3A4 induction by levomepromazine and clozapine in the liver, and to assess the effect of these drugs on their own metabolism and on the biotransformation of other co-administered drugs which are the CYP3A4 substrates.


Assuntos
Antipsicóticos/farmacologia , Clozapina/farmacologia , Citocromo P-450 CYP3A/biossíntese , Indução Enzimática/efeitos dos fármacos , Metotrimeprazina/farmacologia , Células Cultivadas , Inibidores das Enzimas do Citocromo P-450 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado , RNA Mensageiro/biossíntese
3.
Toxicol Appl Pharmacol ; 406: 115239, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32941854

RESUMO

Antipsychotics are often used in combination with other psychotropic drugs to treat a variety of psychiatric disorders, as well as in combination with other drugs taken by patients with co-morbidities. When these drugs are combined, the potential for drug-drug interaction increases, leading to side-effects, in addition to the predicted increase in effectiveness. The present study aimed at examining the effects of the three atypical neuroleptics asenapine, lurasidone and iloperidone on cytochrome P450 (CYP) expression in the human liver. The study was carried out on cryopreserved human hepatocytes. The hepatotoxicity of the tested drugs was assessed after exposure to the neuroleptics (LDH cytotoxicity assay). CYP activities were measured in the incubation medium using the CYP-specific reactions: caffeine 3-N-demethylation (CYP1A1/2), diclofenac 4'-hydroxylation (CYP2C9), perazine N-demethylation (CYP2C19) and testosterone 6ß-hydroxylation (CYP3A4). Parallel, CYP mRNA levels were measured in neuroleptic-treated hepatocytes. Asenapine significantly decreased the mRNA level and activity of CYP1A2, while iloperidone potently diminished the mRNA level and activity of CYP3A4 in the cultures of human hepatocytes. Lurasidone did not affect the expression and activity of any of the investigated human CYP enzymes. The presented findings may have clinical implications for the prediction of potential drug-drug interactions involving the asenapine-induced inhibition of metabolism of CYP1A2 substrates (e.g. caffeine, theophylline, melatonin, tricyclic antidepressants, phenacetin, propranolol) and iloperidone-induced inhibition of CYP3A4 substrates (e.g. antidepressants, benzodiazepines, atorvastatin, macrolide antibiotics, calcium channel antagonists).


Assuntos
Antipsicóticos/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Hepatócitos/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Isoxazóis/farmacologia , Cloridrato de Lurasidona/farmacologia , Piperidinas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Dibenzocicloeptenos , Interações Medicamentosas , Hepatócitos/metabolismo , Humanos , L-Lactato Desidrogenase/metabolismo , RNA Mensageiro/metabolismo
4.
Pharmacol Rep ; 72(6): 1685-1694, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32279279

RESUMO

BACKGROUND: The present study aimed at examining the inhibitory effect of two atypical neuroleptics iloperidone and lurasidone on the main human cytochrome P450 (CYP) enzymes in pooled human liver microsomes and cDNA-expressed CYP enzymes (supersomes). METHODS: The activity of these enzymes was determined by the following CYP-specific reactions: caffeine 3-N-demethylation/CYP1A2, diclofenac 4'-hydroxylation/CYP2C9, perazine N-demethylation/CYP2C19, bufuralol 1'-hydroxylation/CYP2D6 and testosterone 6ß-hydroxylation/CYP3A4, respectively, using HPLC. RESULTS: Iloperidone inhibited the activity of CYP3A4 via a noncompetitive mechanism (Ki = 0.38 and 0.3 µM in liver microsomes and supersomes, respectively) and CYP2D6 via a competitive mechanism (Ki = 2.9 and 10 µM in microsomes and supersomes). Moreover, iloperidone attenuated the activity of CYP1A2 (Ki = 45 and 31 µM in microsomes and supersomes) and CYP2C19 via a mixed mechanism (Ki = 6.5 and 32 µM in microsomes and supersomes) but did not affect CYP2C9. Lurasidone moderately inhibited CYP1A2 (Ki = 12.6 and 15.5 µM in microsomes and supersomes), CYP2C9 (Ki = 18 and 3.5 µM in microsomes and supersomes) and CYP2C19 via a mixed mechanism (Ki = 18 and 18.4 µM in microsomes and supersomes), and CYP3A4 via a competitive mechanism (Ki = 29.4 and 9.1 µM in microsomes and supersomes). Moreover, lurasidone competitively, though weakly diminished the CYP2D6 activity (Ki = 37.5 and 85 µM in microsomes and supersomes). CONCLUSION: The examined neuroleptics showed inhibitory effects on different CYP enzymes. The obtained results indicate that metabolic/pharmacokinetic interactions with iloperidone (involving mainly CYP3A4 and CYP2D6) and possibly with lurasidone (involving CYP1A2, CYP2C9 or CYP2C19) may occur during combined therapy.


Assuntos
Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Isoxazóis/farmacologia , Cloridrato de Lurasidona/farmacologia , Piperidinas/farmacologia , Animais , Antipsicóticos/farmacologia , Baculoviridae/genética , Sistema Enzimático do Citocromo P-450/metabolismo , DNA Complementar/genética , Humanos , Insetos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia
5.
Pharmacol Rep ; 72(3): 612-621, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32219694

RESUMO

BACKGROUND: Inhibition of cytochrome P450 (CYP) enzymes is the most common cause of harmful drug-drug interactions. The present study aimed at examining the inhibitory effect of the novel antipsychotic drug asenapine on the main CYP enzymes in human liver. METHODS: The experiments were performed in vitro using pooled human liver microsomes and the human cDNA-expressed CYP enzymes: CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 (Supersomes). Activities of CYP enzymes were determined using the CYP-specific reactions: caffeine 3-N-demethylation (CYP1A2), diclofenac 4'-hydroxylation (CYP2C9), perazine N-demethylation (CYP2C19), bufuralol 1'-hydroxylation (CYP2D6), and testosterone 6ß-hydroxylation (CYP3A4). The rates of the CYP-specific reactions were assessed in the absence and presence of asenapine using HPLC. RESULTS: The obtained results showed that both in human liver microsomes and Supersomes asenapine potently and to a similar degree inhibited the activity of CYP1A2 via a mixed mechanism (Ki = 3.2 µM in liver microsomes and Supersomes) and CYP2D6 via a competitive mechanism (Ki = 1.75 and 1.89 µM in microsomes and Supersomes, respectively). Moreover, asenapine attenuated the CYP3A4 activity via a non-competitive mechanism (Ki = 31.3 and 27.3 µM in microsomes and Supersomes, respectively). In contrast, asenapine did not affect the activity of CYP2C9 or CYP2C19. CONCLUSION: The potent inhibition of CYP1A2 and CYP2D6 by asenapine, demonstrated in vitro, will most probably be observed also in vivo, since the calculated Ki values are close to the presumed concentration range for asenapine in the liver in vivo. Therefore, pharmacokinetic interactions involving asenapine and CYP2D6 or CYP1A2 substrates are likely to occur during their co-administration to patients.


Assuntos
Antipsicóticos/metabolismo , Antipsicóticos/farmacologia , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Dibenzocicloeptenos , Interações Medicamentosas , Humanos , Microssomos Hepáticos
6.
Pharmacol Rep ; 71(6): 1140-1146, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31655278

RESUMO

BACKGROUND: 1-Methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ) demonstrates significant neuroprotective activity. It can interact with agonistic conformation of dopamine (DA) receptors. 1MeTIQ inhibits the formation of 3,4-dihydroxyphenylacetic acid as well as production of free radicals and shifts DA catabolism toward COMT-dependent O-methylation. 1MeTIQ inhibits both MAO-A and B enzymes activity and increases neurotransmitters levels in the brain. It shows significant antidepressant-like effect in forced swim test (FST) in rats. This compound might be effective for depression therapy in a clinical setting but its success is determined not only by good efficacy, but also by an acceptable its ADMET profile. The use of combination in silico prediction with in vivoand in vitro studies greatly simplifies the search for new, safer and effectively acting drugs. METHODS: The aim of this study was to investigate the degree of histopathological changes in different rats tissues after acute and chronic administration of 1MeTIQ. Additionally, prediction of its properties in terms of absorption, distribution, metabolism, elimination and toxicity in the human body was performed. RESULTS: The obtained data did not show extensive and significant toxic effects of tested substance in in vivo and in vitro studies in rats, and in silico ADMET prediction. CONCLUSIONS: These results can help to discover a new effective and safe antidepressant substance and have important significance in the treatment of depression in clinic. Additionally, the use in the treatment of depression substance with neuroprotective, antioxidant and antidepressant-like effects in the CNS and existing endogenously might be also beneficial in controlling the adverse CNS inflammatory processes accompanying depression.


Assuntos
Aminas/metabolismo , Antidepressivos/efeitos adversos , Antidepressivos/farmacologia , Tetra-Hidroisoquinolinas/efeitos adversos , Tetra-Hidroisoquinolinas/farmacologia , Ácido 3,4-Di-Hidroxifenilacético/efeitos adversos , Ácido 3,4-Di-Hidroxifenilacético/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/metabolismo , Dopamina/metabolismo , Masculino , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/efeitos adversos , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Wistar , Natação/fisiologia
7.
Drug Metab Dispos ; 46(6): 786-793, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29555828

RESUMO

Our recent work suggested a negative effect for the serotonergic innervation of the paraventricular nuclei (PVN) of the hypothalamus on growth hormone secretion and growth hormone-dependent expression of CYP2C11. The aim of our present research was to determine the effect of the activation of the 5-hydroxytryptamine [(5-HT) serotonin] 5-HT1 or 5-HT2 receptors in the PVN on the expression and activity of cytochrome P450 in male rat liver. The serotonergic agonists 5-carboxyamidotryptamine [(5-CT), a 5-HT1 receptor-type agonist], 8-hydroxy-2-(di-n-propyloamino)-tetralin [(8-OH-DPAT), a 5-HT1A receptor agonist], sumatriptan (a 5-HT1B/D receptor agonist), and 2,5-dimethoxy-4-iodoamphetamine [(DOI), a 5-HT2A/C receptor agonist] were individually injected into the PVN. The liver cytochrome P450 activity and expression and the levels of serum and pituitary and hypothalamic hormones were measured. 5-CT and 8-OH-DPAT significantly decreased the activity and expression of CYP2C11 at both the mRNA and protein levels, which was accompanied by an increase in pituitary and hypothalamic somatostatin levels and a decrease in the serum growth hormone concentration. The expression of CYP3A1/23 also decreased. The serum corticosterone concentration declined after the injection of 8-OH-DPAT. The obtained results indicated that 5-HT1A but not the 5-HT1B/D or 5-HT2 receptors in the PVN are engaged in the negative neuroendocrine regulation of cytochrome P450 via the stimulation of hypothalamic somatostatin secretion and in the decreases in the serum growth hormone and corticosterone concentrations. Since the affected enzymes metabolize steroids and drugs and 5-HT1A receptors are engaged in the action of psychotropic drugs, the results obtained may be of both physiologic and pharmacological meaning.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Família 2 do Citocromo P450/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Esteroide 16-alfa-Hidroxilase/metabolismo , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Animais , Corticosterona/metabolismo , Hormônio do Crescimento/metabolismo , Fígado , Masculino , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Ratos , Ratos Wistar , Serotonina/metabolismo , Agonistas do Receptor de Serotonina/farmacologia
8.
Eur J Med Chem ; 145: 790-804, 2018 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-29407591

RESUMO

Currently used antipsychotics are characterized by multireceptor mode of action. While antagonism of dopamine D2 receptors is responsible for the alleviation of "positive" symptoms of schizophrenia and the effects at other, particularly serotonergic receptors are necessary for their additional therapeutic effects, there is no consensus regarding an "ideal" target engagement. Here, a detailed SAR analysis in a series of 45 novel azinesulfonamides of cyclic amine derivatives, involving the aryl-piperazine/piperidine pharmacophore, central alicyclic amine and azinesulfonamide groups has led to the selection of (S)-4-((2-(2-(4-(benzo[b]thiophen-4-yl)piperazin-1-yl)ethyl)pyrrolidin-1-yl)sulfonyl)isoquinoline (62). The polypharmacology profile of 62, characterized by partial 5-HT1AR agonism, 5-HT2A/5-HT7/D2/D3R antagonism, and blockade of SERT, reduced the "positive"-like, and "negative"-like symptoms of psychoses. Compound 62 produced no catalepsy, demonstrated a low hyperprolactinemia liability and displayed pro-cognitive effects in the novel object recognition task and attentional set-shifting test. While association of in vitro features with the promising in vivo profile of 62 is still not fully established, its clinical efficacy should be verified in further stages of development.


Assuntos
Aminas/farmacologia , Antipsicóticos/farmacologia , Cognição/efeitos dos fármacos , Receptores de Dopamina D2/metabolismo , Sulfonamidas/farmacologia , Aminas/síntese química , Aminas/química , Animais , Antipsicóticos/síntese química , Antipsicóticos/química , Relação Dose-Resposta a Droga , Cobaias , Células HEK293 , Humanos , Masculino , Estrutura Molecular , Ratos , Ratos Wistar , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
9.
ACS Med Chem Lett ; 7(6): 618-22, 2016 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-27326337

RESUMO

A series of N1-azinylsulfonyl-3-(1,2,3,6,tetrahyrdopyridin-4-yl)-1H-indole derivatives was designed to obtain highly potent 5-HT6 receptor ligands. The study allowed for the identification of 25 (4-{[5-methoxy-3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indol-1-yl]sulfonyl}isoquinoline), a potent and selective 5-HT6 receptor antagonist. The selected compound, was evaluated in vivo in a novel object recognition (NOR) and forced swim (FST) tests in rats, demonstrating distinct pro-cognitive and antidepressant-like properties (MED = 1 mg/kg and 0.1 mg/kg, i.p., respectively). Compound SB-742457, used as comparator, reversed memory deficits in NOR task in similar doses, while in FST it was active in 10-30-fold higher dose (3 mg/kg). In contrast to SB-742457, which was active in Vogel test (MED = 3 mg/kg), compound 25 displayed no anxiolytic activity.

10.
Biochem Pharmacol ; 112: 82-9, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27137992

RESUMO

Our recent work showed that the brain serotonergic system negatively regulated liver cytochrome P450. The aim of our present research was to study the effect of damage to the serotonergic innervation of the paraventricular (PVN) or arcuate nuclei (ARC) of the hypothalamus on the neuroendocrine regulation of cytochrome P450 (CYP). Male rats received bilateral injections of the serotonergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) into the PVN or ARC. One week after the injection brain neurotransmitters, serum hormones (growth hormone, testosterone, corticosterone, thyroid hormones), pituitary somatostatin and liver cytochrome P450 expression and activity were measured. Lesion of the serotonergic innervation of the PVN decreased serotonin level in the hypothalamic area containing the PVN, causing an increase in growth hormone and testosterone concentrations in the blood and, subsequently, an increase in the expression (mRNA and protein level) and activity of isoform CYP2C11 in the liver. In contrast, damage to the serotonergic innervation of the ARC, which caused a decrease in serotonin level in the hypothalamic area containing the ARC, reduced the concentration of growth hormone and the expression and activity of CYP2C11. In conclusion, the obtained results show a reverse effect of the serotonergic innervation of the hypothalamic paraventricular (a negative effect) and arcuate nuclei (a positive effect) on growth hormone secretion and growth hormone-dependent CYP2C11 expression. They also suggest that CYP2C11 expression may be changed by drugs acting via the serotonergic system, their effect depending on their mechanism of action, route of administration (intracerebral, peripheral) and distribution pattern within the hypothalamus.


Assuntos
5,7-Di-Hidroxitriptamina/farmacologia , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Hidrocarboneto de Aril Hidroxilases/genética , Família 2 do Citocromo P450/genética , Fígado/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Serotonina/metabolismo , Esteroide 16-alfa-Hidroxilase/genética , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Masculino , Núcleo Hipotalâmico Paraventricular/metabolismo , Hormônios Hipofisários/sangue , Ratos Wistar
11.
Drug Metab Dispos ; 44(3): 445-52, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26884482

RESUMO

Melatonin is used in the therapy of sleep and mood disorders and as a neuroprotective agent. The aim of our study was to demonstrate that melatonin supported (via its deacetylation to 5-methoxytryptamine) CYP2D-mediated synthesis of serotonin from 5-methoxytryptamine. We measured serotonin tissue content in some brain regions (the cortex, hippocampus, nucleus accumbens, striatum, thalamus, hypothalamus, brain stem, medulla oblongata, and cerebellum) (model A), as well as its extracellular concentration in the striatum using an in vivo microdialysis (model B) after melatonin injection (100 mg/kg i.p.) to male Wistar rats. Melatonin increased the tissue concentration of serotonin in the brain structures studied of naïve, sham-operated, or serotonergic neurotoxin (5,7-dihydroxytryptamine)-lesioned rats (model A). Intracerebroventricular quinine (a CYP2D inhibitor) prevented the melatonin-induced increase in serotonin concentration. In the presence of pargyline (a monoaminoxidase inhibitor), the effect of melatonin was not visible in the majority of the brain structures studied but could be seen in all of them in 5,7-dihydroxytryptamine-lesioned animals when serotonin storage and synthesis via a classic tryptophan pathway was diminished. Melatonin alone did not significantly increase extracellular serotonin concentration in the striatum of naïve rats but raised its content in pargyline-pretreated animals (model B). The CYP2D inhibitor propafenone given intrastructurally prevented the melatonin-induced increase in striatal serotonin in those animals. The obtained results indicate that melatonin supports CYP2D-catalyzed serotonin synthesis from 5-methoxytryptamine in the brain in vivo, which closes the serotonin-melatonin-serotonin biochemical cycle. The metabolism of exogenous melatonin to the neurotransmitter serotonin may be regarded as a newly recognized additional component of its pharmacological action.


Assuntos
Encéfalo/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Melatonina/metabolismo , Serotonina/metabolismo , 5-Metoxitriptamina/metabolismo , Animais , Masculino , Microdiálise/métodos , Neurotransmissores/metabolismo , Ratos , Ratos Wistar
12.
Pharmacol Rep ; 67(6): 1178-82, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26481538

RESUMO

BACKGROUND: Inhibition of cytochrome P450 (CYP) isoenzymes is the most common cause of harmful drug-drug interactions. The present study was aimed at examining the inhibitory effect of the phenothiazine neuroleptic levomepromazine on main CYP isoenzymes in human liver. METHODS: The experiment was performed in vitro using the human cDNA-expressed CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 (Supersomes). CYP isoenzyme activities were determined using the CYP-specific reactions: caffeine 3-N-demethylation (CYP1A2), diclofenac 4'-hydroxylation (CYP2C9), perazine N-demethylation (CYP2C19), bufuralol 1'-hydroxylation (CYP2D6) and testosterone 6ß-hydroxylation (CYP3A4). The rates of the CYP-specific reactions were assessed in the absence and presence of levomepromazine (1-50 µM). The concentrations of CYP-specific substrates and their metabolites formed by CYP isoenzymes were measured by HPLC with UV or fluorimetric detection. RESULTS: Levomepromazine potently inhibited CYP2D6 (K(i) = 6 µM) in a competitive manner. Moreover, the neuroleptic moderately diminished the activity of CYP1A2 (K(i) = 47 µM) and CYP3A4 (K(i) = 34 µM) via a mixed mechanism. On the other hand, levomepromazine did not affect the activities of CYP2C9 and CYP2C19. CONCLUSION: The inhibition of CYP1A2, CYP2D6 and CYP3A4 by levomepromazine, demonstrated in vitro in the present study, should also be observed in vivo (especially the CYP2D6 inhibition by levomepromazine), since the calculated K(i) values are below or close to the presumed concentration range for levomepromazine in the liver in vivo. Therefore pharmacokinetic interactions involving levomepromazine and CYP2D6, CYP1A2 or CYP3A4 substrates are likely to occur in patients during co-administration of the above-mentioned substrates/drugs.


Assuntos
Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Metotrimeprazina/farmacologia , Antipsicóticos/farmacologia , Relação Dose-Resposta a Droga , Humanos , Técnicas In Vitro , Isoenzimas/antagonistas & inibidores , Cinética , Fígado/enzimologia
13.
Pharmacol Rep ; 66(6): 1122-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25443744

RESUMO

BACKGROUND: Joint administration of phenothiazine neuroleptics and an antidepressant or carbamazepine is applied in the therapy of many complex psychiatric disorders. The aim of the present study was to investigate possible effects of the tricyclic antidepressant drug amitriptyline and the anticonvulsant drug carbamazepine on the metabolism of the aliphatic-type phenothiazine neuroleptic levomepromazine in human liver. METHODS: The experiment was performed in vitro using human liver microsomes. The rates of levomepromazine 5-sulfoxidation and N-demethylation (levomepromazine concentrations: 5, 10, 25 and 50µM) were assessed in the absence and presence of amitriptyline or carbamazepine added in vitro (drug concentrations: 1, 2.5, 5, 10, 25µM). RESULTS: A kinetic analysis of levomepromazine metabolism carried out in the absence or presence of carbamazepine showed that the anticonvulsant drug potently inhibited levomepromazine 5-sulfoxidation (Ki=7.6µM, non-competitive inhibition), and moderately decreased the rate of levomepromazine N-demethylation (Ki=15.4µM, mixed inhibition) at therapeutic drug concentrations. On the other hand, amitriptyline weakly diminished the rate of levomepromazine 5-sulfoxidation (Ki=63µM, mixed inhibition) and N-demethylation (Ki=47.7µM, mixed inhibition). CONCLUSION: Regarding the central and peripheral effects of levomepromazine and some of its metabolites, the observed metabolic interaction between this neuroleptic and carbamazepine may be of pharmacological and clinical importance.


Assuntos
Amitriptilina/farmacologia , Carbamazepina/farmacologia , Metotrimeprazina/farmacocinética , Microssomos Hepáticos/metabolismo , Amitriptilina/administração & dosagem , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/farmacologia , Antidepressivos Tricíclicos/administração & dosagem , Antidepressivos Tricíclicos/farmacologia , Antipsicóticos/administração & dosagem , Antipsicóticos/farmacocinética , Carbamazepina/administração & dosagem , Relação Dose-Resposta a Droga , Interações Medicamentosas , Humanos , Técnicas In Vitro , Metotrimeprazina/administração & dosagem
14.
Biochem Pharmacol ; 90(2): 188-95, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24841887

RESUMO

The aim of the present study was to identify cytochrome P450 isoenzymes (CYPs) involved in the 5-sulfoxidation and N-demethylation of the aliphatic-type phenothiazine neuroleptic levomepromazine in human liver. Experiments were performed in vitro using cDNA-expressed human CYP isoforms (Supersomes 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4), liver microsomes from different donors and CYP-selective inhibitors. The obtained results indicate that CYP3A4 is the main isoform responsible for levomepromazine 5-sulfoxidation (72%) and N-demethylation (78%) at a therapeutic concentration of the drug (10µM). CYP1A2 contributes to a lesser degree to levomepromazine 5-sulfoxidation (20%). The role of CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP2E1 in catalyzing the above-mentioned reactions is negligible (0.1-8%). Moreover, at a higher, toxicological concentration of the neuroleptic (100µM), the relative contribution of CYP1A2 to levomepromazine metabolism visibly increases (from 20% to 28% for 5-sufoxidation, and from 8% to 32% for N-demethylation), while the role of CYP3A4 significantly decreases (from 72% to 59% for 5-sulfoxidation, and from 78% to 47% for N-demethylation). The obtained results indicate that the catalysis of levomepromazine 5-sulfoxidation and N-demethylation in humans shows a strict CYP3A4 preference, especially at a therapeutic drug concentration. Hence pharmacokinetic interactions involving levomepromazine and CYP3A4 substrates (e.g. tricyclic antidepressants, calcium channel antagonists, macrolide antibiotics, testosterone), inhibitors (e.g. ketoconazole, erythromycin, SSRIs) or inducers (e.g. rifampicin, carbamazepine) are likely to occur.


Assuntos
Antipsicóticos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Isoenzimas/metabolismo , Fígado/enzimologia , Metotrimeprazina/metabolismo , Microssomos Hepáticos/enzimologia , Biocatálise , Humanos , Inativação Metabólica , Cinética , Fígado/efeitos dos fármacos , Microssomos Hepáticos/efeitos dos fármacos , Especificidade por Substrato
15.
Biochem Pharmacol ; 86(11): 1614-20, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24051135

RESUMO

The present study was aimed at assessing the influence of noradrenergic innervation of the paraventricular nucleus (PVN) and the arcuate nucleus (ARC) of the brain hypothalamus on cytochrome P450 expression in the liver. DSP-4, a neurotoxin specific to noradrenergic nerve terminals, was administrated locally into the PVN or ARC. One week after neurotoxin injection, the levels of neurotansmitters (noradrenaline/dopamine/serotonin) were measured in the middle part of the hypothalamus, hormone concentrations were estimated in blood plasma, and the activity and the protein levels of CYP isoforms were measured in the liver. A significant decrease in noradrenaline level in the hypothalamus was observed after DSP-4 injection into the PVN or ARC. The levels of dopamine or serotonin remained unchanged or slightly lowered. Simultaneously, significant changes in the plasma concentration of growth hormone were found; its elevation in PVN-lesioned rats and a drop in ARC-lesioned ones. There were no changes in the plasma concentration of the thyroid hormones or corticosterone. The activity and protein levels of isoforms CYP2C11, CYP3A and CYP2A rose in the liver of PVN-lesioned rats, but the activity and protein level of CYP2C11 fell in ARC-lesioned animals such a tendency being also observed in the case of CYP3A. Our study shows that noradrenergic innervation of the PVN and ARC of the hypothalamus exerts an opposite effect on the regulation of cytochrome P450 in the liver. These findings may be important for pharmacological experiments and pharmacotherapy with neuroactive drugs, since cytochrome P450 is responsible for the metabolism of steroids and the majority of drugs.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/enzimologia , Norepinefrina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Neurônios Adrenérgicos/efeitos dos fármacos , Neurônios Adrenérgicos/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Benzilaminas/farmacologia , Corticosterona/sangue , Sistema Enzimático do Citocromo P-450/biossíntese , Dopamina/metabolismo , Isoenzimas , Masculino , Neurotoxinas/farmacologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Ratos , Ratos Endogâmicos , Serotonina/metabolismo , Hormônios Tireóideos/sangue
16.
J Allergy Clin Immunol ; 132(1): 170-81, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23727037

RESUMO

BACKGROUND: T-cell tolerance of allergic cutaneous contact sensitivity (CS) induced in mice by high doses of reactive hapten is mediated by suppressor cells that release antigen-specific suppressive nanovesicles. OBJECTIVE: We sought to determine the mechanism or mechanisms of immune suppression mediated by the nanovesicles. METHODS: T-cell tolerance was induced by means of intravenous injection of hapten conjugated to self-antigens of syngeneic erythrocytes and subsequent contact immunization with the same hapten. Lymph node and spleen cells from tolerized or control donors were harvested and cultured to produce a supernatant containing suppressive nanovesicles that were isolated from the tolerized mice for testing in active and adoptive cell-transfer models of CS. RESULTS: Tolerance was shown due to exosome-like nanovesicles in the supernatants of CD8(+) suppressor T cells that were not regulatory T cells. Antigen specificity of the suppressive nanovesicles was conferred by a surface coat of antibody light chains or possibly whole antibody, allowing targeted delivery of selected inhibitory microRNA (miRNA)-150 to CS effector T cells. Nanovesicles also inhibited CS in actively sensitized mice after systemic injection at the peak of the responses. The role of antibody and miRNA-150 was established by tolerizing either panimmunoglobulin-deficient JH(-/-) or miRNA-150(-/-) mice that produced nonsuppressive nanovesicles. These nanovesicles could be made suppressive by adding antigen-specific antibody light chains or miRNA-150, respectively. CONCLUSIONS: This is the first example of T-cell regulation through systemic transit of exosome-like nanovesicles delivering a chosen inhibitory miRNA to target effector T cells in an antigen-specific manner by a surface coating of antibody light chains.


Assuntos
Anticorpos/imunologia , Linfócitos T CD8-Positivos/imunologia , Dermatite de Contato/prevenção & controle , Epitopos , Exossomos/fisiologia , Tolerância Imunológica , MicroRNAs/fisiologia , Animais , Humanos , Camundongos , Biossíntese de Proteínas , Linfócitos T Reguladores/imunologia
17.
Pharmacol Rep ; 65(5): 1247-55, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24399720

RESUMO

BACKGROUND: Rat CYP2C11 (besides CYP2C6) can be regarded as a functional counterpart of human CYP2C9. The aim of the present study was to investigate the influence of classic and novel antidepressant drugs on the activity of CYP2C11, measured as a rate of testosterone 2α and 16α-hydroxylation. METHODS: The reaction was studied in control liver microsomes in the presence of antidepressants, as well as in microsomes from rats treated intraperitoneally (ip) with pharmacological doses of the tested drugs (imipramine, amitriptyline, clomipramine, nefazodone - 10 mg/kg ip; desipramine, fluoxetine, sertraline - 5 mg/kg ip; mirtazapine - 3 mg/kg ip) for one day or two weeks (twice a day), in the absence of antidepressants in vitro. RESULTS: The investigated antidepressant drugs added to control liver microsomes produced certain inhibitory effects on CYP2C11 activity, which were moderate (sertraline, nefazodone and clomipramine: Ki = 39, 56 and 66 µM, respectively), modest (fluoxetine and amitriptyline: Ki = 98 and 108 µM, respectively) or weak (imipramine and desipramine: Ki = 191 and 212 µM, respectively). Mirtazapine had no inhibitory effect on CYP2C11 activity. One-day exposure of rats to the antidepressant drugs did not significantly change the activity of CYP2C11 in liver microsomes; however, imipramine, desipramine and fluoxetine showed a tendency to diminish the activity of CYP2C11. Of the antidepressants studied, only desipramine and fluoxetine administered chronically elevated CYP2C11 activity; those effects were positively correlated with the observed increases in the enzyme protein level. CONCLUSION: Three different mechanisms of the antidepressants-CYP2C11 interaction are postulated: 1) a direct inhibition of CYP2C11 shown in vitro by nefazodone, SSRIs and TADs; 2) in vivo inhibition of CYP2C11 produced by one-day treatment with imipramine, desipramine and fluoxetine, which suggests inactivation of the enzyme by reactive metabolites; 3) in vivo induction of CYP2C11 produced by chronic treatment with desipramine and fluoxetine, which suggests their influence on enzyme regulation.


Assuntos
Antidepressivos/farmacologia , Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Fígado/efeitos dos fármacos , Esteroide 16-alfa-Hidroxilase/antagonistas & inibidores , Animais , Hidrocarboneto de Aril Hidroxilases/metabolismo , Biotransformação , Família 2 do Citocromo P450 , Indução Enzimática , Hidroxilação , Cinética , Fígado/enzimologia , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Ratos , Ratos Wistar , Esteroide 16-alfa-Hidroxilase/metabolismo , Testosterona/metabolismo
18.
Pharmacol Res ; 67(1): 53-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23098818

RESUMO

Brain serotonin has been implicated in the pathophysiology of a wide spectrum of psychiatric disorders, as well as in the mechanism of action of psychotropic drugs. The aim of present study was to identify rat cytochrome P450 (CYP) isoforms which can catalyze the O-demethylation of 5-methoxytryptamine to serotonin, and to find out whether that alternative pathway of serotonin synthesis may take place in the brain. The study was conducted on cDNA-expressed CYPs (rat CYP1A1/2, 2A1/2, 2B1, 2C6/11/13, 2D1/2/4/18, 2E1, 3A2 and human CYP2D6), on rat brain and liver microsomes and on human liver microsomes (the wild-type CYP2D6 or the allelic variant 2D6*4*4). Of the rat CYP isoforms studied, CYP2D isoforms were the most efficient in catalyzing the O-demethylation of 5-methoxytryptamine to serotonin, but they were less effective than the human isoform CYP2D6. Microsomes from different brain regions were capable of metabolizing 5-methoxytryptamine to serotonin. The reaction was inhibited by the specific CYP2D inhibitors quinine and fluoxetine. Human liver microsomes of the wild-type CYP2D6 metabolized 5-methoxytryptamine to serotonin more effectively than did the defective CYP2D6*4*4 ones. The obtained results indicate that rat brain CYP2D isoforms catalyze the formation of serotonin from 5-methoxytryptamine, and that the deficit or genetic defect of CYP2D may affect serotonin metabolism in the brain. The results are discussed in the context of their possible physiological and pharmacological significance in vivo.


Assuntos
Encéfalo/metabolismo , Serotonina/biossíntese , 5-Metoxitriptamina/metabolismo , Animais , Catálise , Sistema Enzimático do Citocromo P-450 , Humanos , Masculino , Microssomos/metabolismo , Ratos , Ratos Wistar
19.
Pharmacol Rep ; 64(6): 1578-83, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23406770

RESUMO

BACKGROUND: The metabolism of phenothiazine neuroleptics (promazine, perazine) in a primary culture of human hepatocytes after pretreatment of cells with those neuroleptics was studied. METHODS: The hepatocytes were pretreated with 25 µM promazine or perazine for 96 h. Then, the cells were incubated for 2, 4, 6, 8 and 24 h in the presence of neuroleptics. At the indicated time points, concentrations of phenothiazines and their metabolites (5-sulfoxides and N-desmethyl derivatives) were measured in the culture medium using HPLC with UV detection. RESULTS: Pretreatment of the primary culture of human hepatocytes with promazine or perazine resulted in accumulation of their metabolites in the culture medium. Such an effect was not observed in the case of control cultures (not pretreated with neuroleptics). CONCLUSION: The obtained results suggest that the tested phenothiazines may stimulate their own metabolism by inducing CYP1A2, CYP3A4 and CYP2C19 isoforms.


Assuntos
Antipsicóticos/metabolismo , Sistema Enzimático do Citocromo P-450/biossíntese , Hepatócitos/enzimologia , Perazina/metabolismo , Promazina/metabolismo , Idoso , Antipsicóticos/farmacologia , Biotransformação , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Remoção de Radical Alquila , Indução Enzimática , Feminino , Hepatócitos/efeitos dos fármacos , Humanos , Isoenzimas , Perazina/farmacologia , Cultura Primária de Células , Promazina/farmacologia , Espectrofotometria Ultravioleta , Sulfóxidos/metabolismo , Fatores de Tempo
20.
Pharmacol Rep ; 64(6): 1411-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23406751

RESUMO

BACKGROUND: Cytochrome P450 3A (CYP3A) subfamily is involved in the metabolism of xenobiotics (e.g., drugs) and endogenous substances (e.g., steroids). The aim of the present study was to investigate the influence of classic and atypical neuroleptics on the level and activity of CYP3A in rat liver, measured as a rate of testosterone 2ß- and 6ß-hydroxylation. METHODS: The reactions were studied in control liver microsomes in the presence of neuroleptics, as well as in the microsomes of rats treated intraperitoneally (ip) with pharmacological doses of the drugs (promazine and thioridazine 10 mg/kg; chlorpromazine 3 mg/kg; haloperidol 0.3 mg/kg; risperidone 0.1 mg/kg; sertindole 0.05 mg/kg) for one day or two weeks (twice a day), in the absence of the neuroleptics in vitro. RESULTS: The investigated neuroleptics added in vitro to control liver microsomes produced a moderate or week inhibitory effects on CYP3A activity. After one-day exposure of rats to neuroleptics, only chlorpromazine significantly increased the activity of CYP3A. Chronic treatment of rats with thioridazine diminished the protein level and activity of CYP3A, while risperidone induced this enzyme. CONCLUSION: The observed changes in the CYP3A expression after prolonged exposition to neuroleptics suggest their influence on the enzyme regulation.


Assuntos
Antipsicóticos/farmacologia , Citocromo P-450 CYP3A/metabolismo , Fígado/efeitos dos fármacos , Animais , Antipsicóticos/administração & dosagem , Citocromo P-450 CYP3A/biossíntese , Inibidores do Citocromo P-450 CYP3A , Indução Enzimática , Inibidores Enzimáticos/farmacologia , Hidroxilação , Hidroxitestosteronas/metabolismo , Injeções Intraperitoneais , Isoenzimas , Cinética , Fígado/enzimologia , Masculino , Proteínas de Membrana/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Ratos , Ratos Wistar , Esteroide Hidroxilases/metabolismo , Especificidade por Substrato , Testosterona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...